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Abstract. We derive the expression for the thermal conductivity κ in the low-temperature limit T → 0
in d-wave superconductors, taking into account the presence of competing orders such as spin-density
wave, is-pairing, etc. The expression is used for analyzing recent experimental data in La2−xSrxCuO4. Our
analysis strongly suggests that competing orders can be responsible for anomalies in behavior of thermal
conductivity observed in those experiments.

PACS. 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) –
74.72.Dn La-based cuprates – 74.72.-h Cuprate superconductors (high-Tc and insulating parent
compounds)

The existence of four nodal points in d-wave superconduc-
tors provides rich and, sometimes, controllable dynamics
of quasiparticle excitations at zero temperature. In par-
ticular, the expressions for electrical, thermal, and spin
conductivity simplify considerably in the universal-limit
ω → 0, T → 0 [1,2]. It is noticeable that the role of
the thermal conductivity κ is special: while vertex and/or
Fermi-liquid corrections modify the bare, “universal”, val-
ues of both electric and spin conductivities, the univer-
sal value of the thermal conductivity is not influenced by
them [2]. It is:

κ0

T
=

k2
B

3
v2

F + v2
∆

vF v∆
, (1)

where vF is a Fermi velocity, v∆ is a gap velocity, and kB

is the Boltzmann constant (we use units with � = c = 1).
The basis for such a remarkably simple expression is that
there is a finite density of states N(0) of gapless quasipar-
ticles down to zero energy [2,3]:

N(0) =
2

π2vF v∆
Γ0 ln

p0

Γ0
, (2)

where Γ0 ≡ Γ (ω → 0), with Γ (ω) an impurity scattering
rate, and p0 =

√
πvF v∆/a is an ultraviolet momentum

cutoff (a is a lattice constant) [2]. Note that expression (1)
itself is valid in the so-called “dirty” limit, T � Γ0. There-
fore, although this expression does not contain Γ0 explic-
itly, a nonzero Γ0 is crucial both for equations (1) and (2).
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But what will happen if those quasiparticles become
gapped? One may think that in that case both N(0)
and κ0 are zero. However, as will be shown in this pa-
per, they both are finite even in that case, if the impurity
scattering rate is non-zero. In fact, it will be shown that
they are:
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(3)

and

Nm(0) =
2

π2vF v∆
Γ0 ln

p0√
Γ 2

0 + m2
, (4)

where m a quasiparticle gap. The noticeable point is that,
for all values of the gap up to m � Γ0, the suppression
of both thermal conductivity and quasiparticle density is
mild: κ0/κ

(m)
0 and N(0)/Nm(0) are of order one. However,

the suppression in thermal conductivity rapidly becomes
strong as m crosses this threshold. The second noticeable
point is that, as we will discuss below, the gap m plays here
a universal role and may represent different competing or-
ders in d-wave superconductors, such as spin density wave,
charge density wave, is-pairing, etc. Although their dy-
namics are different, expressions (3) and (4) for κ

(m)
0 and

Nm are the same. This happens because, first, all those
gaps m correspond to different types of “masses” in the
Dirac equation describing nodal quasiparticle excitations,
and, secondly, unlike electric and spin conductivities, the
thermal conductivity k

(m)
0 is blind with respect to quan-

tum numbers distinguishing those masses.
The expression k

(m)
0 corresponds to the dirty limit

when T � Γ0. In d-wave superconductors, Γ0 can be as
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large as of order 1 K or even 10 K, and k
(m)
0 can be an im-

portant measurable characteristic there. Recently, two ex-
perimental groups have observed an anomalous behavior
in the thermal conductivity in underdoped La2−xSrxCuO4

(Refs. [4,5] and Refs. [6,7]). One of the most interesting
observations of experiment [6] is that at very low tempera-
tures the value of the thermal conductivity in underdoped
La2−xSrxCuO4 (LSCO) is less than the absolute minimum
kmin/T = 2k2

B/3 of expression (1) for k0/T , correspond-
ing to the isotropic case with vF = v∆. This puzzle can
be naturally explained by utilizing the modified expres-
sion (3) with a nonzero m describing a competing order
in the superconducting phase. We will discuss this and
other results of experiments [4–7] below.

At subkelvin temperatures relevant to the low-T heat
conduction experiments, we will use the continuum, low-
energy, description for the nodal quasiparticles in the d-
wave state. At each node, the quasiparticles are described
by a two-component Nambu field. It will be convenient,
following reference [8], to utilize four-component fields,
by combining Nambu fields corresponding to the nodes
within each of the two diagonal pairs. Thus we have two
four-component Dirac fields. The corresponding represen-
tation for three Dirac matrices is

γ0 = σ1 ⊗ I, γ1 = −iσ2 ⊗ σ3, γ2 = iσ2 ⊗ σ1, (5)

where σi are the Pauli matrices and while the first factor
in the tensor product acts in the subspace of the nodes in
a diagonal pair, the second factor acts on indices inside a
Nambu field. The matrices satisfy the algebra {γµ, γν} =
2gµν , gµν = (1,−1,−1), µ, ν = 0, 1, 2.

We will consider quasiparticle gaps with the matrix
structure Oi = (I, iγ5, γ3, γ3γ5). Here the matrices γ3

and γ5, anticommuting with matrices γν , are

γ3 = iσ2 ⊗ σ2, γ5 = σ3 ⊗ I. (6)

Then, for each of the two four-component Dirac fields, the
bare Matsubara Green’s function can be written as

G0(iωn,k) =
1

iωnγ0 − vF k1γ1 − v∆k2γ2 − miOi
. (7)

Therefore, different gaps mi correspond to different types
of Dirac masses. As was pointed out in references [8–11],
these gaps represent different competing orders in low
energy limit. In particular, the mass m1, with O1 =
I, describes the (incommensurate) cos spin-density-wave
(SDW), and the mass m2, with O2 = iγ5, describes
sin SDW. The masses m3 and m4, with O3 = γ3 and
O4 = γ3γ5, correspond to the idxy-pairing and the is-
pairing, respectively. One can also consider a gap corre-
sponding to the charge-density-wave (CDW). In that case,
one should introduce a Dirac mass term mixing the four-
component Dirac fields corresponding to the two different
diagonal pairs of the nodes. For simplicity, we will not
consider it in this paper.

The scattering on impurities can be taken into ac-
count by introducing a Matsubara self-energy Σ(iωn), so
that the dressed Green’s function becomes G(iωn,k) =

G0(iωn −Σ(iωn),k). As usual, retarded Green’s function
is obtained by analytically continuing Green’s function G,
GR(ω,k) = G(iωn → ω + iε,k), and the impurity scatter-
ing rate is defined as Γ (ω) = −ImΣR(ω). At low temper-
atures we take Γ0 ≡ Γ (ω → 0). The size of Γ0 depends
on the impurity density nimp as well as on the scattering
phase shift δ. Solving the Schwinger-Dyson equation for
the self-energy in the self-consistent t-matrix approxima-
tion, one can find that in the unitary limit (δ = π/2) the
equation determining Γ0 for a nonzero mi has the form [12]

Γ 2
0 = π2vF v∆Γ̃

[
Nf ln

p2
0

Γ 2
0 + m2

i

]−1

, (8)

where Nf is the number of four-component Dirac fields
and Γ̃ = nimp/πρ0 with ρ0 the normal state density
of states. Since v∆ ∼ ∆0, the magnitude of the super-
conducting gap, the scattering rate Γ0 is proportional to√

∆0Γ̃ ∼ √
∆0nimp.

The longitudinal dc thermal conductivity is calculated
by means of the Kubo formula. In the bubble approxima-
tion, following the standard procedure, it can be expressed
through the quasiparticle spectral function A(ω,k) as
follows

κ(m) =
πNf

8kBT 2

∫ ∞

−∞

dωω2

cosh2 ω
2kBT

∫
d2k

(2π)2

× {
v2

F tr [γ1A(ω,k)γ1A(ω,k)]

+ v2
∆tr [γ2A(ω,k)γ2A(ω,k)]

}
. (9)

Here the spectral function is given by the discontinuity of
the fermion Green’s function

A(ω,k) = − 1
2πi

[
GR(ω + iε,k) − GA(ω − iε,k)

]
. (10)

With Green’s function at hand, we can calculate A(ω,k).
For example, for the gap proportional to the unit Dirac
matrix, it has the form (m ≡ m1) [13]

A(ω,k) =
Γ0

2πE

[
γ0E − vF k1γ1 − v∆k2γ2 + m

(ω − E)2 + Γ 2
0

+
γ0E + vF k1γ1 + v∆k2γ2 − m

(ω + E)2 + Γ 2
0

]
, (11)

where E(k) =
√

v2
F k2

1 + v2
∆k2

2 + m2 is the quasiparticle
energy. Substituting the last expression in equation (9)
and taking the limit T → 0, we arrive at

κ
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2πNfk2
B

3
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0 )2
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v2

F + v2
∆

vF v∆

Γ 2
0

Γ 2
0 + m2

, (12)

i.e., we derived expression (3) for the thermal conductivity
(in which Nf = 2). The result for three other gaps, m2,
m3, and m4, introduced above, is the same.
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With the spectral function (11), the density of states
(per spin)

Nm(ω) =
1
2

∫
d2k

(2π)2
tr [γ0A(ω,k)] (13)

is easily calculated

Nm(ω) =
Nf

2π2vF v∆

[
Γ0 ln

p0√
Γ 2

0 + (ω − m)2

+ Γ0 ln
p0√

Γ 2
0 + (ω + m)2

+ |ω|
(

π

2
+ tan−1 ω2 − m2 − Γ 2

0

2|ω|Γ0

) ]
. (14)

It yields expression (4) for the density of states with zero
energy. Therefore, in the presence of impurities, the quasi-
particle band survives even for a finite m1. The physical
reason for this is the formation of impurity bound states
inside the gap [14]. Overlap between these states leads
to impurity band supporting the quasiparticle heat (and
electric) current.

The observation of a residual linear in T term in
the thermal conductivity in cuprates (YBa2Cu3O7−δ

(YBCO) [15], Bi2Sr2CaCu2O8 (Bi-2212) [16] as well as
LSCO [6]) is usually interpreted as a direct consequence
of nodes in the gap. However, as it follows from equa-
tion (12), a subdominant order parameter, leading to a
gap for nodal quasiparticles, does not exclude such a lin-
ear term in the thermal conductivity, although the latter
does not have a universal form anymore2.

Thus we conclude that nonperturbative dynamics, re-
sponsible for the creation of competing orders in the su-
percritical phase, can violate the universality in the ther-
mal conductivity in the low temperature limit T → 0.
Recent experiments indicate that the existence of such
competing orders is quite possible [17]. Several theoretical
models have been proposed to describe this phenomenon
(for a review, see Ref. [18]). As we will now discuss, using
the expression for the thermal conductivity derived above,
this phenomenon can be relevant for understanding recent
experiments in La2−xSrxCuO4 [4–7].

The measurements of the thermal conductivity in
LSCO at low temperature [4–7] showed the following char-
acteristic features:

(a) at subkelvin temperatures, the value of κ/T decreases
with x [4,6]. At temperature as low as 40 mK, the

1 Note that in the absence of impurities [Γ0 = 0], we would
get Nm(ω)|Γ0=0 = (Nf/2πvF v∆)|ω|θ(ω2 − m2), i.e., in that
case, the mass m would lead to a gap in the density of states.

2 Although the fact that opening of a gap for nodal quasipar-

ticles leads to changes in κ
(m)
0 is natural from physical view-

point, there has been a controversy concerning this point in
the literature. For example, in the recent paper [12] the au-
thors claim that in the limit T → 0 the universal expression
for the thermal conductivity, equation (1), survives even for
gapped quasiparticles. Expression (12) derived above clearly
shows that this is not the case.

value of κ/T in some underdoped samples is either
less than the absolute minimum κmin/T = 2k2

B/3
of expression (1) (for x = 0.06) or quite close to it
(for x = 0.07 and x = 0.09) [6]. On the other hand,
this anomalous behavior in the thermal conductiv-
ity disappears in overdoped samples (x = 0.17 and
x = 0.20) [6];

(b) the evolution of κ/T across optimum doping is
smooth [4,6];

(c) the thermal conductivity is sensitive to magnetic
field. While in overdoped samples it increases with
magnetic field, in underdoped samples the ther-
mal conductivity decreases with increasing magnetic
field [5,7]. The authors of references [5,7] describe
this as a field-induced thermal metal-to-insulator
transition;

(d) although remaining smooth, the evolution of κ/T
across optimum doping becomes visibly faster with
increasing magnetic field [5].

The results of item (a) can be easily understood if one
assumes that there exists a competing order, described by
the Dirac mass m, in the superconducting phase of un-
derdoped LSCO. Then an appropriate value of m in ex-
pression (3) will provide the necessary suppression of the
thermal conductivity. The fact that such an anomalous be-
havior in κ/T disappears with increasing x, in overdoped
samples, can be understood if one assumes that the dy-
namical gap (“mass”) m decreases with increasing x. As
to this assumption, it is well-known in quantum field the-
ory that, indeed, an increase of the fermion density of-
ten suppresses a dynamical Dirac mass. The reasons for
that are simple. With increasing the fermion density, the
screening effects become stronger and the quasiparticle
interactions become weaker. In addition, at a sufficiently
large quasiparticle density, the energy gain from creat-
ing a gap m in the quasiparticle spectrum will be sur-
passed by the energy loss of pushing up the energy of all
states in the band above the gap. In the case of the model
with Dirac fermions describing highly oriented pyrolytic
graphite (HOPG) [19,20], this fact was explicitly shown
in reference [20]. Although the present system is quite dif-
ferent from HOPG, that example supports plausibility of
this assumption.

It is tempting to speculate that the dynamical gap m
disappears close to optimum doping (x0 = 0.16 in LSCO).
A smooth evolution of κ/T across optimum doping then
suggests that it could be a continuous phase transition
with the scaling law of the form m ∼ (xc−x)ν in the scal-
ing region with 0 < (xc − x)/xc � 1, where the critical
value xc � x0. The critical index ν = 1/2 would cor-
respond to the mean-field phase transition. In that case,
there would be a kink in expression (3) at the critical point
x = xc. Indeed, since the thermal conductivity (3) de-
pends on m2, and there is a linear in m2 term as m2 → 0,
its derivative with respect to x will have a finite disconti-
nuity at x = xc for ν = 1/2. In the case of a non-mean-field
continuum phase transition, with ν > 1/2, the evolution
of k/T across xc � x0 would be smoother.
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This picture, with appropriate modifications, can sur-
vive in the presence of a magnetic field. In particular, the
fact that in overdoped samples κ increases with magnetic
field as

√
H [5,7], implies that the dynamics in a magnetic

field in overdoped samples is apparently conventional. In-
deed, the

√
H behavior is well described by semiclassical

models [21]. This seems to suggest that there is no gap m
(competing order) in overdoped samples.

The situation is different in underdoped samples. The
magnetic field enhances the suppression in κ observed in
the same samples at zero field (item (c) above). Moreover,
the evolution κ/T across optimum doping becomes visi-
bly faster with increasing H (item (d)). This suggests that
magnetic field plays here the role of a catalyst, enhancing
the gap m. For sufficiently large values of m, the suppres-
sion in κ will be so large that a sample effectively becomes
a thermal insulator as was observed in experiments [5,7].

Microscopic dynamics responsible for creating compet-
ing orders can be quite sophisticated [18]. This issue is
outside the scope of this paper. Here we will only com-
ment on the role of a magnetic field as a catalyst in gen-
erating the gap m. In non-superconducting systems, it is
well known that a magnetic field is indeed a strong cata-
lyst in generating gaps (masses) for Dirac fermions [22]. In
particular, this effect was studied in the model describing
HOPG [19,20]. It is clear, however, that the dynamics in
the vortex phase of d-wave superconductors is very differ-
ent and the question about the relevance of a magnetic
field for generating (or enhancing) a quasiparticles gap
there is still open. For example, while the authors of pa-
pers [23–25] believe that such a role for a magnetic field in
that phase is plausible, the analysis of the authors of ref-
erence [26] indicates that the magnetic field can actually
supress idxy and is gaps in a d-wave state.

In this paper, we will use a heuristic approach and
demonstrate that the experimental data in references [5,7]
can be qualitatively understood if one requires a gap that
is generated below a critical doping and increases with
a magnetic field. To make this point to be transparent,
we are looking for an ansatz for the gap m(H, x) which
would be as simple as possible. We assume that (a) the
phase transition at the critical doping x = 0.16 is the
mean-field (or nearly mean-field) one, and (b) the gap in-
creases as

√
H with the magnetic field (such a scale covari-

ant dependence of m on H was first considered in d-wave
superconductors in Ref. [23]). This leads us to the ansatz:

m(H, x) = (1 − x/0.16)1/2 θ(0.16 − x)(m0 + bEH), (15)

where θ is the step function, EH = �vF /2R =
(�vF /2)

√
eH/�c is a characteristic energy scale in the

presence of a magnetic field in the vortex state (2R is
the average distance between vortices), and m0 and b
are free parameters. Taking vF = 2.5 × 107 cm/s for
LSCO cuprates [7,27], we find EH = 38 K × √

H(T )
where the field H(T ) is taken in teslas. The constant b is
of order 1 (for numerical calculations we take b = 2.2).
As to the parameter m0 that determines the gap for
H = 0, it can be found from the ratio κ/κ0 = 2/3 (i.e.,
κ/T � 12 µW K−2 cm−1) for x = 0.06, H = 0 and T → 0,

as reported in reference [6]. Then, taking κ/κ0 = κm
0 /κ0,

with κm
0 from equation (3), we get m0 = aΓ0 where the

constant a � 0.9.
Let us now calculate the thermal conductivity by us-

ing ansatz (15) for m(H, x). The impurity bandwidth for
LSCO is estimated to be Γ0 � 25−30 K [7,27] which
is two orders of magnitude larger than for very clean
YBa2Cu3O6.99 samples. While in clean YBa2Cu3O6.99

the scattering of quasiparticles from vortices must be
taken into account, one can neglect the dependence of the
width Γ0 on the magnetic field (at least for not very high
fields) in the case of rather dirty LSCO. On the other
hand, the presence of a circulating supercurrent around
vortices in the vortex state can be taken into account in
the semiclassical approach by making the Doppler shift in
quasiparticle energies, ω → ω − vs(r)k, [28] (vs(r) is the
superfluid velocity at a position r which depends on the
form of vortices distribution). In this case, the local ther-
mal conductivity κ(r) has to be averaged over the unit cell
of the vortex lattice [29],

κ(H, T ) =
1
A

∫
d2r κ(r) =

∫
dεP(ε)κ(ε, T ), (16)

where
P(ε) =

1
A

∫
d2rδ(ε − vs(r)k) (17)

is the vortex distribution, and A = πR2 is the area of the
vortex unit cell. We use the Gaussian distribution func-
tion P(ε) = (1/

√
πEH) exp[−ε2/E2

H ] which is believed to
be the most suitable distribution in the presence of high
disorder [30]. Thus we need to calculate

κ(H, T ) =
πNf

8kBT 2

∫ ∞

−∞

dωω2

cosh2 ω
2kBT

∫ ∞

−∞
dεP(ε)

∫
d2k

(2π)2

× {
v2

F tr [γ1A(ω − ε,k)γ1A(ω − ε,k)]

+ v2
∆tr [γ2A(ω − ε,k)γ2A(ω − ε,k)]

}
(18)

(compare with Eq. (9)).
Taking the limit T → 0 in the last equation, we arrive

at the following expression:

κ(H, 0)
κ0

=
1
2

∫ ∞

−∞
dεP(ε)

[
1 +

ε2 − m2 + Γ 2
0

2|ε|Γ0

×
(

π

2
− tan−1 Γ 2

0 + m2 − ε2

2|ε|Γ0

)]
, (19)

where we normalized the thermal conductivity on the uni-
versal value in equation (1).

In Figures 1 and 2 we present the ratio κ(H, 0)/κ0

calculated as a function of the magnetic field H (Fig. 1)
and the doping x (Fig. 2). The form of these dependences
is quite similar to that of experimental data presented in
Figure 2 of reference [7] and in Figure 4 of reference [5],
respectively.

At small values of the doping, x = 0.06 and x =
0.13 (low curves in Fig. 1), the thermal conductivity
decreases with increasing field as a result of increasing
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Fig. 1. κ(H)/T [normalized to the value κ(0)/T ] versus
H at T = 0 and for the doping with the values x =
0.06, 0.13, 0.17, 0.2. The impurity width is Γ0 = 25 K (for the
upper curve (x = 0.2) Γ0 = 30 K).

Fig. 2. Doping dependence of the T = 0 thermal conductiv-
ity κ [normalized to the universal value κ0] for two values of
the magnetic field H = 1 T (dotted curve) and H = 13 T (solid
curve) and Γ0 = 25 K.

the gap m(H). For supercritical values of the doping
(x = 0.17; 0.2 — upper curves in Fig. 1) the field depen-
dence is approximately

√
H . This behavior is in accor-

dance with the increase in quasiparticle population due to
the Volovik effect that is valid even for gapped quasipar-
ticles [31] when the vortex scattering is neglected.

Figure 2 shows the dependence of κ on the doping
for two different values of the magnetic field. One can
see the suppression of κ in the underdoped regime as a
result of the presence of the magnetic-field-induced gap.
Note that both curves grow fast near the critical doping
xc = 0.16 where the gap disappears. It is also noticeable
that this growth is much faster for the H = 13 T curve
than that for the H = 1 T curve. These facts agree with
the experimental data [5] discussed in item (d) above.

Although the present analysis is based on the particu-
lar ansatz (15) for m(H, x), one can expect that the main
characteristics in the behavior of the thermal conductiv-
ity will retain qualitatively the same for a wide class of
gaps m(H, x) sharing the features that they are generated
below a critical doping and increase with a magnetic field.

In conclusion, we derived the expression for the ther-
mal conductivity in d-wave superconductors in the pres-
ence of competing orders. The derived expression (3)
for κ

(m)
0 /T is simple and transparent. We also analyzed

the dependence of the thermal conductivity on a mag-
netic field and a doping in the vortex state. Our results
strongly suggest that the presence of competing orders
can be crucial for understanding recent experiments in
LSCO [4–7].
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and Engineering Research Council of Canada. The research of
V.P.G. was also supported in part by the SCOPES-projects
7 IP 062607 and 7 UKPJ062150.00/1 of Swiss NSF.

Note added in proof

Recently, in a different approach, a suppression of the ther-
mal conductivity in the vortex phase of cuprates has been
studied in M. Takigawa, M. Ichioka, K. Machida, ArXiv:
cond-mat/0306492.
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